1.5hp 10hp 20hp 30hp 75hp tria tempus inductionis electrica motoris

A PM (permanent magnet) motor does not have a field winding on the stator frame, instead relying on PMs to provide the magnetic field against which the rotor field interacts to produce torque. Compensating windings in series with the armature may be used on large motors to improve commutation under load. Because this field is fixed, it cannot be adjusted for speed control. PM fields (stators) are convenient in miniature motors to eliminate the power consumption of the field winding. Most larger DC motors are of the "dynamo" type, which have stator windings. Historically, PMs could not be made to retain high flux if they were disassembled; field windings were more practical to obtain the needed amount of flux. However, large PMs are costly, as well as dangerous and difficult to assemble; this favors wound fields for large machines.

To minimize overall weight and size, miniature PM motors may use high energy magnets made with neodymium or other strategic elements; most such are neodymium-iron-boron alloy. With their higher flux density, electric machines with high-energy PMs are at least competitive with all optimally designed singly-fed synchronous and induction electric machines. Miniature motors resemble the structure in the illustration, except that they have at least three rotor poles (to ensure starting, regardless of rotor position) and their outer housing is a steel tube that magnetically links the exteriors of the curved field magnets.

Some of the problems of the brushed DC motor are eliminated in the BLDC design. In this motor, the mechanical "rotating switch" or commutator is replaced by an external electronic switch synchronised to the rotor's position. BLDC motors are typically 85–90% efficient or more. Efficiency for a BLDC motor of up to 96.5% have been reported,whereas DC motors with brushgear are typically 75–80% efficient.

The BLDC motor's characteristic trapezoidal counter-electromotive force (CEMF) waveform is derived partly from the stator windings being evenly distributed, and partly from the placement of the rotor's permanent magnets. Also known as electronically commutated DC or inside out DC motors, the stator windings of trapezoidal BLDC motors can be with single-phase, two-phase or three-phase and use Hall effect sensors mounted on their windings for rotor position sensing and low cost closed-loop control of the electronic commutator.

BLDC motors are commonly used where precise speed control is necessary, as in computer disk drives or in video cassette recorders, the spindles within CD, CD-ROM (etc.) drives, and mechanisms within office products, such as fans, laser printers and photocopiers. They have several advantages over conventional motors:

Compared to AC fans using shaded-pole motors, they are very efficient, running much cooler than the equivalent AC motors. This cool operation leads to much-improved life of the fan's bearings.
Without a commutator to wear out, the life of a BLDC motor can be significantly longer compared to a DC motor using brushes and a commutator. Commutation also tends to cause a great deal of electrical and RF noise; without a commutator or brushes, a BLDC motor may be used in electrically sensitive devices like audio equipment or computers.
The same Hall effect sensors that provide the commutation can also provide a convenient tachometer signal for closed-loop control (servo-controlled) applications. In fans, the tachometer signal can be used to derive a "fan OK" signal as well as provide running speed feedback.
The motor can be easily synchronized to an internal or external clock, leading to precise speed control.
BLDC motors have no chance of sparking, unlike brushed motors, making them better suited to environments with volatile chemicals and fuels. Also, sparking generates ozone, which can accumulate in poorly ventilated buildings risking harm to occupants' health.
BLDC motors are usually used in small equipment such as computers and are generally used in fans to get rid of unwanted heat.
They are also acoustically very quiet motors, which is an advantage if being used in equipment that is affected by vibrations.
Modern BLDC motors range in power from a fraction of a watt to many kilowatts. Larger BLDC motors up to about 100 kW rating are used in electric vehicles. They also find significant use in high-performance electric model aircraft.

A commutated electrically excited series or parallel wound motor is referred to as a universal motor because it can be designed to operate on AC or DC power. A universal motor can operate well on AC because the current in both the field and the armature coils (and hence the resultant magnetic fields) will alternate (reverse polarity) in synchronism, and hence the resulting mechanical force will occur in a constant direction of rotation.

Operating at normal power line frequencies, universal motors are often found in a range less than 1000 watts. Universal motors also formed the basis of the traditional railway traction motor in electric railways. In this application, the use of AC to power a motor originally designed to run on DC would lead to efficiency losses due to eddy current heating of their magnetic components, particularly the motor field pole-pieces that, for DC, would have used solid (un-laminated) iron and they are now rarely used.

 sogears vestibulum

Maxime officii est, ut de tradenda tuam electronicarum recta coegi expertus.

Get in touch

Group NER CO., LTD

Yantai ANo.5 Wanshoushan Road, Shandong, Sina

T + 86 535 6330966

W + 86 185 63806647

© 2021 Sogears. Omnes vitae lorem.